

Doris Voina

<https://github.com/dvoina13>

dorisvoina@gmail.com doris.voina@mila.quebec
<https://dorisvoina.science>

Postdoctoral Scholar

Université de Montréal, Department of Psychology, and Mila - Quebec AI Institute, Montréal, QC Canada
June 2025 - present

EDUCATION

University of Washington, Seattle, WA

• Ph.D., Applied Mathematics; Certificate in Neural Computation and Engineering, Computational Neuroscience Program August 2022

• M.Sc., Applied Mathematics December 2015

Princeton University, Princeton, NJ

• A.B., Mathematics; Certificates in Applied and Computational Mathematics, German June 2013

PAST EMPLOYMENT

Postdoctoral Scholar

University of Washington, AI Institute in Dynamic Systems and Electrical and Computer Engineering Department, Seattle, WA September 2022 - May 2025

Research Assistant & Visiting Student

University of Washington & Allen Institute for Brain Science 2014-2015; 2019 - 2022

Software Developer Engineer Intern, TigerGraph

Worked on a project involving Graph Neural Network explainability methods

Freelance Data Analyst Base Capital, June 2016 - September 2016

Bayesian models on salary prediction

Data Scientist, Cognetik

Customer analytics solutions

Research Assistant, Princeton University

Working with Prof. Naomi Leonard modeling leadership in the collective behavior of a dance group September 2013 - June 2014

TEACHING

Instructor, University of Washington

July 2019 - August 2019

Lead instructor teaching AMATH 383 *Introduction to Continuous Mathematical Modeling*

Teaching Assistant, Allen Institute's Summer Workshop for the Dynamic Brain,

September 2021

Teaching Assistant, University of Washington

March 2017 - June 2019

Workshop instructor, MAIN 2025

December 2025

“Computation in Neuroscience & AI: a Dynamical Systems Perspective with RNNs”:

<https://main-educational.github.io/neuroai-dynamical-systems/>

PUBLICATIONS

- Voina D., Brunton S., Kutz J.N., *Deep Generative Modeling for Identification of Noisy, Non-Stationary Dynamical Systems*

doi: <https://doi.org/10.48550/arXiv.2410.02079>

Design data-driven method to extract interpretable, parsimonious models in the form of closed-form differential equations for nonlinear, noisy, and non-stationary dynamical systems.

- Voina D., Recanatesi S., Hu B., Shea-Brown E., Mihalas S., *Single circuit in V1 capable of switching contexts during movement using inhibitory population as a switch*, Neural Computation Journal, 2021

Designed a Bayesian model that can switch priors to model the brain's visual cortex. To infer weights between neurons and make model predictions, I solved a constrained optimization problem using the Adam optimizer from PyTorch. (*Python*)

- Voina D., Shea-Brown E., Mihalas S., A biologically inspired architecture with switching units can learn to generalize across backgrounds

Developed a new transfer learning method for image classification for objects set on different contexts/backgrounds drawing inspiration from the visual cortex model. (*Python*)

ONGOING PROJECTS

- Implement System 1/System 2 cognition (faster, automatic versus slower, more precise cognition) in AI learning by testing architectures and principles that could yield energy-efficient, heuristic reasoning alongside more systematic, deliberative reasoning (with Shahab Bakhtiari)
- Develop realistic virtual environments using generative modeling and mouse camera data to simulate an animal's visual experience through its naturalistic habitat. Use semi-supervised learning to train models using these virtual settings (with Imane Hamzaoui, Shahab Bakhtiari)
- Design data-driven method to extract interpretable, parsimonious models in the form of closed-form differential equations for nonlinear, noisy, and non-stationary dynamical systems.
- An application of deep generative networks and SINDy to reduce dimensionality in partial differential equations (with Yuma Nakamura, Dr. Thomas de Jong, and Dr. Hirofumi Notsu at Kanazawa University)
- Cell type classification based on neural activity and connectivity using Graph Neural Networks (with Allen Institute for Brain Science and Allen Institute in Neural Dynamics)

INVITED TALKS

- *Rethinking simplicity in computation: quick heuristics in the brain and in AI*, Neuro-AI Scientific retreat, Le Baluchon, Quebec, Canada, October 30, 2025
- *Dynamic SINDy: latent variable discovery in noisy and nonlinear systems*, Machine Learning and Dynamical Systems (MLDS) Seminar, Alan Turing Institute, London, UK, March 27, 2025
- *Deep Generative Modeling for Identification of Noisy, Non-Stationary Dynamical Systems*, DEDS (Differential Equations for Data Science), February 2025, Kyoto, Japan
- *Deep Generative Modeling for Identification of Noisy, Non-Stationary Dynamical Systems*, University of Texas at Arlington, Arlington, TX, November 15 2024
- *Deep Generative Modeling for Identification of Noisy, Non-Stationary Dynamical Systems*, University of Nevada at Reno, Reno, NV, October 11 2024
- *Graph neural networks and their applications to cell type classification in the mouse brain*, Montana State University, Bozeman, MT, September 4 2024
- *Deep Generative Modeling for Identification of Noisy, Non-Stationary Dynamical Systems*, Montana State University, Bozeman, MT, September 5 2024
- *Deep Generative Modeling for Identification of Noisy, Non-Stationary Dynamical Systems*, WCCM (World Congress on Computational Mechanics), Vancouver BC, Canada, July 21-26 2024
- *Deep Generative Modeling for Identification of Noisy, Non-Stationary Dynamical Systems*, SIAM Uncertainty Quantification, Trieste, Italy, March 2024
- *Deep Generative Modeling for Identification of Noisy, Non-Stationary Dynamical Systems*, Conference on Complex Systems, Bahia, Brazil, October 2023
- *Flexible visual processing in biological and artificial neural networks*, Neural Computation and Engineering Connection, Seattle 2019, 2020
- *Network mechanisms for switching neuronal dynamics*, The Women in Network Science (WiNS) seminar, Duke University, March 2023

POSTERS

- *Deep generative networks as a computational approach for global non-linear control modeling in the nematode C. elegans*, with Brunton S., Kutz J.N., Society for Neuroscience, October 5-7, 2024, Chicago (virtual poster)
- Deep Generative Modeling for Identification of Noisy, Non-Stationary Dynamics for Nematode C. elegans Locomotion and for Other Systems, with Brunton S., Kutz J.N., Science Understanding through Data Science conference, August 21-23 2024, Pasadena, CA; doi: [10.22541/essoar.172736445.51490633/v1](https://doi.org/10.22541/essoar.172736445.51490633/v1)
- *Deep Generative Modeling for Identification of Noisy, Non-Stationary Dynamics for nematode C. elegans locomotion and other systems*, with Brunton S., Kutz J.N., Fourth Symposium on Machine Learning and Dynamical Systems July 8-12, 2024, Toronto, ON Canada
- *Deep Generative Modeling for Identification of Noisy, Non-Stationary Dynamical Systems* with Brunton S., Kutz J.N., Women in Machine Learning Workshop (Neurips workshop), December 2023, New Orleans, LA

- *A biologically inspired architecture with switching units can learn to generalize across backgrounds* with Shea-Brown E., Mihalas S., Society for Neuroscience, November 2022, San Diego, CA
- *Single circuit in V1 capable of switching contexts during movement using VIP population as low-dimensional switch* with Recanatesi S., Hu Brian, Shea-Brown E., Mihalas S., Society for Neuroscience, October 2019, Chicago, IL
- *Visual activity in V1 during locomotion demystified* with Recanatesi S., Shea-Brown E., Mihalas S., Computational Neuroscience Society, July 2018, Seattle, WA; Bernstein Conference September 2018, Berlin, Germany
- *Modeling behavior in a virtual visual environment: What (if anything) do mice optimize when foraging for abstract objects?* with Groblewski P., Olsen S., Shea-Brown E., Mihalas S., Society for Neuroscience, October 2015, Chicago IL
- *Fitting Diffusion Models to Value-Based Decisions* with Shenhav A., Feng S., Cohen J.D., Cognitive Neuroscience Society, April 2014, Boston MA

RELEVANT SKILLS

Main programming language: Python 3

Programming: Python, MATLAB (proficient); R, C, C++ (familiarity)

Other technical skills: Proficient in Linux, knowledge of HPC systems, job scheduling (slurm), resource management, cloud computing (AWS), Git/Github

OTHER EXPERIENCE

Summer Internship, Princeton Neuroscience Institute June - September 2013

Mathematics tutor 2011 - 2017

Helping ~30 undergraduates to excel in Calculus I, II, Multivariable Calculus, Linear Algebra

AWARDS

Computational Neuroscience Training Grant September 2019 - September 2021

- Won one of two places in a program supporting two years of graduate stipend

Math competition awards (high school)

- National Mathematical Olympiad in Romania, gold medal 2008 (4th place), “Grigore Moisil” contest: 3 times first place in 2007, 2008, 2009; Putnam top 500 in 2010, and other awards

LEADERSHIP / SERVICE

- Mentoring Imane Hamzaoui, Ph.D. student at Université de Montréal; Yuma Nakamura, Ph.D. student in Mathematics and Physics at Kanazawa University; Evan Ferguson, M.Sc. student in Applied Mathematics at the University of Washington

MONIC (Montréal initiative for consciousness) November 2025 - present

Organizing conferences for the general public, securing funding for the organization

- Co-organizer for the *Data-Driven Modeling of Complex Systems* mini symposium within the World Congress on Computational Mechanics (WCCM), July 21-26, 2024, Vancouver, BC, Canada

WAMM (Women in Applied Mathematics Mentoring Program) March - June 2019, 2020, 2022

- Mentoring four female undergraduates on projects regarding image classification in deep learning

Diversity Committee Member, Applied Mathematics Department, September 2018-September 2020

- Organizing events (e.g. Black History Month) in the Applied Math department sponsoring diversity

Peer review: D3S3 2024 (Neurips, Vancouver Canada workshop), **PNAS 2021** (with Eric Shea-Brown)

OTHER SKILLS & PERSONAL

Languages: English (fluent), Romanian (native), German (intermediate), French (intermediate)

Artistic Skills/Hobbies: mountaineering, photography, writing, dancing, yoga, meditation Vice-president of Princeton Buddhist Group, main organizer & founder of meditation Meetup group

